Quantum Binary UV spectrum communications

The holy grail of galatic communications

( by; Brad Guth / IEIS    updated: March 02/A, 2003 )

The truth be known, there are few willing to consider the greater importance of other life NOT as we know it, let alone other technology NOT as we know it, even though some of their very own published words stipulated otherwise. In spite of contradicting their own words, seems that other life as well as other technology must somehow comply within their idea of human/life standards, else not exist, especially as for having any knowledge and/or expertise different let alone better than ours.

Certainly this following concept upon interplanetary (presumably inter-species) communications is not disclosing anything all that new, at least not of the relevance of what our humanly limited visible spectrum accommodates, which goes way back tens of thousands if not millions of years, along with a good number of Earth's creatures possessing their superior ability to see well into a portion of either UV/IR spectrums and, I believe that sort of evolution accounts well into the very beginnings of life as we know it, as why otherwise evolve keen eyesight, if not to communicate a great deal of invaluable information?

Might I repeat;  there's absolutely no other form of communications that's more universal, that's more inter-species capable than light. Humans are somewhat deficient as limited to the visible spectrum however, other species (as right here on Earth) are not so limited and, whatever we lack can be easily expanded via technology. Only our arrogance stands in our way, only our prejudices impede progress and otherwise creates the need as for implementing ulterior motives and subsequently dispensing skewed science and physics to/from the nearest toilet, instead of openly admitting mistakes and oversights which then opens doors and resolves issues rather than forever creating new ones.

Far better questions might become;  why did humans not evolve or at least retain such highly desirable traits, such as the eyes of an eagle along with the nightvision of an owl and of those nifty feathers and wings of a bird, or how about the fir of a seal or even a penguin, or how about the hybrid of gills and of lungs that would have been so freaking indispensable as for our surviving on such a water logged planet as well as indispensable as for our surviving multitudes of disasters and most of all, where's our ability to learn and fend for ourselves from the moment of birth?  In other words, what the hell went so terribly wrong with Darwin's evolution or perhaps within those terraforming petri dishes?  When it came down to configuring humans, whom decided what (was there humor involved)?  How did we become so pathetically de-evolved?  For humans to have survived thus far, it's taken enormous sums of despicable trial and errors, along with nearly every measure of Earth's energy resources and, only humans have been responsible (irresponsible) for the extinction of countless species (humans included, especially if you were a Cathar and lately if Islamic Muslim) and otherwise accommodated just about every conceivable dastardly deed humanly possible, as well as many new contrivances that seem to remain unobtainable only for the moment.

These following two excerpts are taken from "THE WINSTON SIMPLIFIED DICTIONARY" of 1938

QUANTUM: an elemental amount or unit of radiant energy, varying according to the frequency of the radiator.

QUANTUM THEORY: emission and absorption of radiant energy are not continuous but take place in small finite amounts, or quanta.

QUANTUM BINARY PACKET: this emerging theory is based upon the previous two notions, in that a binary code must surely occupy a carrier or selection/bandwidth of carrier frequencies (call this our prime carrier) and, the quantum aspects may include frequency modulated binary sidebands. By offering essentially infinite variations is where the prime carrier binary code (0/1) gets it's quantum boost or extensions of obtaining infinite code by offering FM diversity, where for example the entire ascii code matrix could be easily contained within one quantum bit.

When I get the opportunity, I'll try my best at drawing this one out, as a picture is worth a billion or perhaps even a quantum of words.

This following report may have recently become a little over stuffed but, it will attempt to reflect upon what's possible as well as what's easily obtainable, as for utilizing near UV as well as UV/b and even UV/a as for a penetration capable interplanetary communications modem. The focus will be including the following:

Quantum binary packet communications (meaning instead of merely 1/0's,   1 1a 1b / 0 0a 0b  and so on).

Potential waveguides may be those created via duplex beams of relatively narrow UV spectrums.

UV prime carriers as tight as 0.1 nm, having FM and/or binary sidebands of +/- .05 nm.

Regarding the throughput benefits of implementing a UV spectrum carrier over anything microwave as well as IR.

The most basic quantum bps rates of a 401.1 nm +/- 0.05 nm sidebands obtaining 747.929^18 bps, with no apparent upper limits in sight.

There's nearly unlimited throughput when sidebands are divided by 512 or potentially 1024 bits per nm sideband. Even a most simplified format of utilizing 401 nm as the prime carrier of basic binary packets, then 8 bits worth of frequency modulated lower frequency sideband and of 8 higher frequency sideband bits, this alone seems to offer a prime^64 worth of throughput (747.943^18^64 bits/sec). Good grief, that's not even the fullest expression of quantum potential. The upper potential is where 1 ms could transfer all human knowledge and equally we humans could conceivably receive all the knowledge of the universe in mere seconds. Of course for that to happen, we'd need to be looking for such and utilizing a higher form of communications receiving capable of such capable demodulation and/or frequency discrimination.

On the low end of the technology performance scale, we're already doing just that, at least we're utilizing light as a carrier and possibly even as a waveguide. We simply need to push our primitive technologies to higher levels before we'll obtain truly advanced knowledge that's intended for Earth, as the transmission sources may be utilizing beams as narrow as 0.001 milliradian (one millionth of a degree) in order to exclude upon whomever they wish, as well as to obtain the degree of beam power performance that may be needed for those multi-lightyear long distance calls, especially if the source is something buried within the Sirius-ABC star system. Obviously due to our limitations and of the distances involved, there's no need of devising duplex capabilities, at least not until quantum waveguide technology comes to past for the primitive inhabitance of Earth, thus simplex receiving is about as good as it gets, unless we're communicating within our solar system, such as between Earth and Venus (more specifically relayed via VL2, too bad we still do not have VL2).

Another outlaw researcher; David Sereda has become an explorer that's on the warpath of great discovery, clearly working outside of Club NASA as well as any accepted institutional box of intellectual thought and expression, thereby receiving no official stamp of approval and essentially quarantined on that nifty "need to know" basis, up against just about every faction that wishes to impose their will upon all others, irregardless of whatever obstruction and cost to humanity. In spite of all that orchestrated opposition, the broad drift of his relativity, based upon the notion of E=fh and upon other understandings of what's existing in our reality but as recorded within much higher frequencies such as the UV spectrum, is clearly what's motivating his interest and beliefs, in that other inhabitants of our universe have been operating and perhaps even somehow existing on entirely different levels of science and physics, in this instance utilizing the much greater frequency and thereby greater energy densities of light in a number of ways we're just barely starting to understand.

Obviously, I too have some worldly knowledge as well as first hand experience that sheds light upon the subject of light. As lately I've been attempting to focus our now more than ever limited resources and talents upon interplanetary communications between Earth and Venus, by utilizing spectrums of near UV light. I've long understood that light is perhaps the most universal language of the living universe and, with sufficient computers and modern CCD cameras or merely high speed packet detectors, such as those utilized in fiber optics or as those of what TERABEAM technologies have in use, perhaps we can safely exploit what the greater other spectrums of light for benefiting all of humanity, including ET's humanity or perhaps lizmanity, have to offer. What do we have to lose? or better yet; what do we have to gain?

Quantum Binary UV Spectrum communications (limited only by technology):
Light spectrums come in various wavelengths, often referred to as nano meters (I believe 0.000000001 m = one nano meter). As frequency is measured or determined by the wavelength, I believe the upper most usefulness of any given frequency that's transceiving data being a minimum of 1/2 wavelength, this clearly indicates the extent by which data can be transferred via any given frequency. In other words, a frequency offering a wavelength of 1 meter can at best communicate binary information at perhaps twice that rate. For an example; a 300 mhz radio frequency is 1 meter in wavelength and, as such can reliably carry a binary message packet throughput of 600^6 worth of 1's and 0's per second but, usually due to transceiver circuitry performance and reliability issues of whatever was originally creating as well as receiving data, that performance is more realistically utilized at 1/8th of the maximum potential, or 75^6 bits per second per carrier as well as per sidebands (if any).

If my math is sufficiently correct (not always the case), I believe 1 meter = 300 mhz, then obviously 1000 nm = 300^12 hz and of a specific frequency of something within the UV spectrum, such as 301.1 nm = 996.3465^12 hz. Obviously that's offering a serious bunch of baud rate capability.

As we know for certain, within a given spectrum of light there's an infinite number of but more realistically a fairly respectable measurable number of specific frequencies, such as in between 500 nm to 200 nm represents a bandwidth of 300 nm or perhaps better stated as allotting 300 most easily measurable unit/nm frequencies. However, I've come to realize that even our technology can reliably differentiate or discern upon lesser spectrum tolerances of the very least 0.1 nm increments and, I've recently learned of 0.01 nm resolution as not only obtainable but sufficiently proven as fact.

If you and I understand binary as being nothing more than packets of zeroes and ones (a packet sequence of bit states being on/off/on and so on), then this next part gets somewhat interesting because, in addition to the fundamental binary CW/pulse (continuous wave/amplitude or pulse modulation), there's also FM (frequency modulation) which can coexist, as riding on or about the same carrier frequency.

Lets say we selected a specific frequency of 301.1 nm as for being this carrier frequency and, we go about binary modulating that as being either on (1) or off (0) at the optimum packet performance potential of 1/2 wavelength, which is certainly a capable solution (impressive even if that performance were divided by a factor of 8) but, now we further introduce a frequency shift as also being binary, in that we shift/excite a nearby/sideband frequency by +/- 0.05 nm. Let us call the + shift (a) as represented by 301.15 nm and the - shift (b) as represented as 301.05 nm. Obviously in addition to whatever volumes of typical 0's and 1's being communicated by the prime carrier of 301.1 nm, we now have introduced a sort of quantum dimension or reality of further obtaining 1a's as well as 0a's and of 1b's as well as 0b's, as the binary frequency shift can easily be associated with a prime carrier 0 or 1.

A single quantum bit message (a basic quantum bit is no longer merely 0's / 1's);
This infinitely variable bit stream might now become:  1 1a 1b  or  0 0a 0b  or any combination thereof, no longer restricted/handicapped as to merely a 1 or a 0. That's certainly not all there is because, frequency modulation need not be entirely all or nothing of what a binary 1/0 action upon the entire sideband can achieve but, either analog/FM like and/or further divided into binary sub bands (as there's certainly frequency bandwidth to burn), thereby essentially no limit in sight as to packing whatever amounts of intelligence into any given pico second of UV bit stream communications. This is of course still referring to what that sole initial carrier frequency of what just 301.1 nm has to offer, as the greater spectrum or available bandwidth of what's between 200 nm to 500 nm clearly indicates, there's a potential of 3000 of those individual 1^-1 nm carrier frequencies nitches to work with. As advancements upon communications technologies go, that's becoming hardly insignificant.

Further accommodating the greater density of seemingly truly astronomical baud rates, there's the rather obvious sheer efficiency of light (especially within the UV spectrum) that's potentially millions of times greater in overall efficiency than anything radio and, there should be darn little if any cross modulation or mixing of various frequencies unless that's what's desired, especially as with any respect to the limitations of relatively low frequency electro magnetic propagation of even microwave RF intermodulation, where you can unexpectedly get damn near everything under the sun.

Way faster than lightspeed waveguides:
Another reality check is having to do with utilizing waveguides and/or optical coax if you well. I've always understood from my earliest years in electronics that electro magnetic propagation through coax or waveguides was far exceeding the speed of light, a decade or more so later were very capable researchers further demonstrating their test results that absolutely confirmed the fact. David Sereda's E=hf galactic clock seems to be indicating upon far more than merely a waveguide effect, where his views have been contemplating few if any limitations as to the speed of light, as long as you get rid of mass.

I'm thinking that a waveguide need not be all that physical as to accomplish the same task. For an example; a 401.1 nm carrier frequency (747.943^18 hz) or at the very least a small collection of such nm beams (as few as two prime carriers) could potentially represent this sort of waveguide confinement and subsequent enhanced performance, with the added bps performance of sidebands residing in between these two primary carriers, thus obviously even more data can be exchanged per second, pretty much exactly like how a physical waveguide functions, possibly allowing another sort of phase shift opportunity that's neither binary nor FM, as to be sharing common data streams entering and subsequently exiting this extremely high energy waveguide confinement of UV light, as more data being sufficiently sequenced or timed so as to share the faster than light performance enhanced bandwidth of what two or more primary carriers has to offer, thus cramming far more of those quantum style binary packets into the main stream of what we have been previously considering as merely a narrow UV spectrum of light, which humans can't see but specialized CCD's certainly can, plain as day.

Perhaps what I'm saying is; within a star like twinkle there could easily be gigabits of highly compacted data. As here on Earth, we can sufficiently overdrive a xenon/mercury illumination by 100X, where the pulse/modulation driver is perhaps delivering a millisecond worth. However, a millisecond burst worth of quantum data packets transmitted at 401.1 or whatever nm frequency is certainly going be substantial and, the energy as to creating that burst is certainly not all that much. A full mega watt of energy delivered into 1 ms is but 1 kw/sec and, even if the entire opperation were merely 50% efficient, that's still but 2 kw/sec (0.555 watt hour). If the UV beam concentrating mirror and subsequent focus were of 0.1 or lesser degrees (if not fully laser), you can quickly see how relatively good technology could easily outperform anything radio.

Fully duplex UV waveguide:
Obviously at the next performance level, there's a need for continuous duplex operation. So, perhaps a total of four primary carriers would become what is comprising a VU super waveguide, thus offering a total of four primary carriers (two transmitting and two receiving) along with 8 worthy segments of +/- 0.05 sideband frequencies, each of which being divided into as many as 1024 bits. Now, that's some sort of quantum binary communications on steriods.

As you can soon realize the result of tapping into such narrow UV carrier frequencies is not so restrictive, as the available bandwidth is truly assume. The following is a review of but one such carrier, along with it's two sidebands of +/- 0.05 nm.

401.10 nm = 747.9429^12 hz
401.05 nm = 748.0362^12 hz
401.15 nm = 747.8499^12 hz

The +/- .05 nm = .1863^12 hz (that's a 0.1 nm bandwidth worth 186.473 giga hertz [ghz])

For the quantum step further along;  instead of merely implementing a binary (on/off) excitation or frequency shift of either +.05 nm or -.05 nm, lets say we implement such frequency shifts as sub-binary by further dividing those +/- 0.05 nm sidebands into 512 bits, which equates to a worth of 364.205078 mhz increments per bit. If to be further implementing to a level of 1024 bits as having to work the entire 0.1 nm is still a whopping 182.102539 mhz increment per bit. Since even I realize we do not currently have the nm^-4 degree of division capability but, certainly there's nothing stopping us from advancing except our own arrogance and that of my having to continually rephrase and correct various math mistakes because those that claim being so much smarter than I can't be bothered. In spite of all that help, if we're currently detecting the gradients of a partial nm (0.01 nm), then we can surely devise upon a scheme by which a binary code would manipulate those available spectrums to either side of any given prime (hole nm) carrier. Possibly a man made pure blue diamond prism would help to facilitate the refinements needed, unless the specialized UV/CCD chips can be relied upon for their spectrum differentiation capabilities at the performance of 747,942.9 ghz (+/- 93.15 ghz), then I recall reading somewhere of certain amber filters or prisms that can slow the speed of light (even stop it entirely) so that decoding can become obtainable within the existing technology of today.

One perfectly terrific side benefit of working the UV spectrum between planets is, that a good percentage of the UV energy can penetrate those thick Venus clouds that are obviously not so thick at night, along with their nighttime temperature being cooler, thus all the more so transparent and in certain locations a rare potential of limited clearing might even exist. This represents that a near UV (400 to 425 nm) beam from Earth would certainly become diffused but sufficiently nighttime detectable to those on the Venus surface, as their nighttime is truly ultra dark and the likely nightvision capability of any nocturnal evolved world would enable the opportunity of not only easily receiving messages but as for devising (if not already available) their own xenon/UV beam transmitters in order to reply. Remembering that the Venus atmosphere is already primed for being excited by a few electrons applied across a small gap and, those electrons are certainly not all that difficult to create. Xenon illumination, especially if being pulsed (10X or more so over driven) is capable of delivering a good deal of UV spectrum, adding a small amount of mercury into the equation creates enormous UV/bc and even some UV/a.

The optics currently capable of looking at the dark side (nighttime season) of Venus are sufficiently able to eliminate and/or ignore (digitally exclude, especially via TRACE) any direct sunlight portions and, likewise the optics and sensors of Venus looking back at Earth are not having to deal with any direct sunlight whatsoever, thus UV binary capabilities are nearly free of unwanted influences, other than stray but natural solar/star events which would obviously be something recognized as analog and easily discounted. Even intelligent frequency modulation is something entirely different than what's being produced naturally, thus the differentiation between what's artificial FM and naturally produced FM becomes another non issue.

So far, with little help from others, I've long since blown my fuse over all this communications theory, as the potential for our transferring massive amounts of data via such narrow spectrums of UV light is certainly proving as being entirely possible and, for all the right reasons doable, just not available for the likes of what you or I have to work with. I'm not even current with whatever David Sereda has been working on because, the opportunity to here his side of the equation just hasn't occurred but, going by his previous conjectures based upon the theory of E=hf, this fundamental understanding certainly indicates upon the very same if not better notion, one that should somehow enable matter to coexist as within the UV spectrum and thereby allude gravity by simply having little if any mass, thus obtaining if not exceeding light speed seems to be the raw idea that David has put forward.

My discovery related quest as for exploring nearby planetary communications, this was intended for that of Earth becoming the one initiating a conservatively simplistic low baud rate packet beamed towards Venus, with sufficient dwell in between packets for all sorts of reseachers to detect whatever materializes as a result, with the off chance that the Venus metro airship would have their teams of astronomy lizard buffs onboard and cruising sufficiently above their cool nighttime clouds, this logic was based upon the rather preliminary basics of our applying nearly beacon like xenon illuminations as signaling those fundamental packets of merely binary 0's and 1's, as to first getting their attention, then cranking up the baud/bps rates to a point where serious amounts of data and hopefully graphical interfacing could take place. In order to extend our window of opportunity, I was further suggesting that (God forbid) we deploy a Venus L2 (VL2) mission comprised of a relatively minimal set of CCD cameras (perhaps just one sufficiently fast scan CCD and otherwise sort of gunbarrel photon detectors suitably aimed at selected nighttime target areas or nighttime clouded zones), as forever focused upon their dark nighttime side, plus incorporating a couple of xenon or solid state laser beam transmitters, which we could then carry on whatever conversations with presumably the surviving inhabitance of Venus. This initial robotic VL2 communications relay mission might become a relatively simplistic satellite of something all toll well under 1000 kg and, obviously I have metric tonnes worth of alternatives and work-around ideas that need further consideration.

As for our backing things down a notch or two;  if we were to attempt a purely simplex goal, of delivering a relatively low baud rate of perhaps as little as one bps, by initially allocating a 100 nm spread as the prime binary carrier and then also excite sidebands of 8 nm that are sufficiently offset by a meaningful deadband of 8 nm from the prime carrier spread, obviously this is entirely within existing technology performance, as for our transmitting as well as for detecting/receiving similar packets.

300~400 nm as the prime 100 nm carrier bandwidth +/- 8 nm deadbands.

Upper sideband of +8 nm (408~416 nm) and lower sideband of -8 nm (284~292 nm). This would cover a fairly good deal of spectrum, perhaps too much.

The above format is certainly not the least bit pushing known technology and, the prime binary carrier alone is certainly capable of massaging enormous packet performance, limited only by our technology and presumably that of whomever is receiving our transmission. Obviously that baud/bps rate of even the most basic binary format can crawl itself along to a pathetic volume of 1 bps or, implementing the fullest options of what the lesser sidebands can introduce as for creating obvious variations upon those prime carrier 0/1 packets. There's obviously nothing stopping the idea from implementing greater throughput as well as further divisions of those sidebands into sub units of 8, 16, 32 and so on segments until each of our modems choke and/or the terraquads of incoming GIF overwhelms our best media storage capabilities.

So far as I know, presumably there's been no harm done unless we consider that of our wasting another two years after the fact (actually it's more like 13 years and hundreds of billions blown), as for our negatively impacting those on Venus, unless of course somebody has been utilizing our Boeing/TRW UV capable laser cannons (spiked with mercury) without sufficient concern for whomever is looking back at Earth, with the other exception of what all the orchestrated flak coming my way has caused a good deal of concern, promoting my further exploratory research into the rather obvious ulterior motives of those involved with delivering such unexpected flak. On the other hand, it's been entirely possible that I'm missing something, overlooking the other possibility that our infamous government and such agencies as our NASA have actually known about all this Venus stuff long before my informing them two years ago (after all, the original captured image is 13 years old). Oddly, I mistakenly believed someone needed to be informed of what my observational discovery had to offer our struggling NASA, an agency which seemed desperate to advance upon something highly humanitarian worthy in order to essentially bring home the bacon, as in obtaining massive new funding that had no associations nor ties to their ticking bomb shell of ongoing involvements with NSA/DoD agendas.

Obviously of what I've mostly discovered, is that many others and myself were seriously disillusioned or sufficiently snookered about the motives as well as the morals of what our NASA was truly all about. I've since discovered there have been tens of thousands sharing my new found concerns (had been for decades), so that too was a considerable discovery of proportions beyond my wildest expectations. Same goes for SETI as well as OSETI, with the ongoing exception there's not likely all that much cloaking by SETI/OSETI on behalf of NSA/DoD agendas, just a total waste of resources and of whatever talents and, if I ever obtain a nickel's worth of funding, I'll see to it that the likes of SETI/OSETI get their fair share of absolutely nothing whatsoever.

Some further research upon "Quantum" turned up the following three out of tens of thousands of QM related sites.

http://plato.stanford.edu/entries/qt-measurement/#Worldmany "The measurement problem in QM (Quantum Mechanics) grew out of early debates over Niels Bohr's "Copenhagen interpretation". Bohr maintained that the physical properties of quantum systems depend in a fundamental way upon experimental conditions, including conditions of measurement. This doctrine appeared explicitly in Bohr's 1935 reply to Einstein, Podolski, and Rosen: "The procedure of measurement has an essential influence on the conditions on which the very definition of the physical quantities in question rests" (Bohr 1935, 1025; see too Bohr 1929). To be specific, Bohr endorsed the following principle:"

"If a quantity Q is measured in system S at time t then Q has a particular value in S at t."

"There are, however, other sorts of states in QM, namely "mixed states", represented not by single vectors but rather by so called density operators."

It seems that I continually misunderstand, either that or perhaps many of these QM researchers continually overlook or have simply not bothered with the fundamental law and/or value of frequency. Perhaps the first unspoken law of QM is to absolutely never devise an actual solution upon anything that could possibly benefit humanity, that way there's no apparent need to define such in any manner that can be understood by another human.

Is not everything in existence somehow represented by a frequency or coexistence of many thereof?

The following two excerpts were somewhat more interesting only because this village idiot understood nearly 1% of what was being discussed, whereas so many other QM web sites seem a wee bit overly "Quantum" just by their complex ways of informing others as to what's what. Perhaps I'm the one misusing "Quantum", as being somewhat like our landing on the moon as being entirely unproven. Perhaps "hyper binary packet" or multiplex binary packet" would be the correct phrase or perhaps the use of "hyper FM/multiplex binary packet" (HFMMBP) could suffice. Seems either way I've more than broken light speed, with clearly no limit in sight, somewhat like David Sereda's ongoing affair with E=hf.

http://www2.slac.stanford.edu/vvc/theory/quantum.html "Particle-Wave Duality "
"In quantum theories, energy and momentum have a definite relationship to wavelength. All particles have properties that are wave-like (such as interference) and other properties that are particle-like (such as localization). Whether the properties are primarily those of particles or those of waves, depends on how you observe them."

"For example, photons are the quantum particles associated with electromagnetic waves. For any frequency, f, the photons each carry a definite amount of energy (E = hf)."

"Only by assuming a particle nature for light with this relationship between frequency and particle energy could Einstein explain the photoelectric effect. Conversely, electrons can behave like waves and develop interference patterns."

http://www.higgo.com/quantum/qpe.htm "Given that we know that something exists (cogito ergo sum), it only takes one further assumption to give us MWI: that there exists the minimum possible amount of information compatible with something existing. Only one bit of information is required to distinguish between nothing and an infinite universe. Anyone who advocates a different interpretation of quantum physics has a lot of complexity to explain away."

To the INDEX page: GUTH Venus (with loads of updates)
alternate URL's: http://guthvenus.tripod.com  and  http://geocities.com/bradguth
Copyright © 2000/2001/2002/2003 - Brad E. Guth
GUTH Venus: All Rights Reserved
Webmaster: Brad Guth - Brad Guth / IEIS   ~  1-253-8576061
created: February 18, 2003

Brad Guth / IEIS IEIS-Brad@Juno.com